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Chapter 1

Notation

The position of the monomers is represented by Ri, while the relative distance or the
bond vector joining two consecutive monomers is ri = Ri+1 −Ri.
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Chapter 2

The size of a Polymer Coil

2.1 The ideal chain

The distribution of bond vectors for a random coil is

p(r) =
δ(|r| − b)

4πb2
(2.1)

so that it is normalised to 1. Clearly, the average of the bond vector:

〈r〉 =

∫
drp(r)r = 0 (2.2)

begin the integrand odd and integrated over a symmetric R3 domain. Also, one should
notice that the end-to-end vector in this case is:

Ree =
∑
i

ri = 0 (2.3)

but its squared vaue is of course non zero

Ree =
∑
nm

rnrm =
∑
n

r2
n +

∑
n6=m

rnrm =
∑
n

r2
n

δ(|r|−b)
= Nb2 (2.4)

since for any n 6= m the product of two bond vectors has zero mean being independent.
Now, let us compute the probability Φ(R, N) that a random coil made of N links has an
end-to-end vector R.

Φ(R, N) =

∫
dr1 . . .

∫
drNδR−

∑
i

ri
δ(|ri| − b)

4πb2
(2.5)
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8 CHAPTER 2. THE SIZE OF A POLYMER COIL

this can be rewritten using (2π)3δ(r) =
∫
dkeik·r therefore:

Φ(R, N) =
1

(2π)3

∫
dkeik·R

(∫
dr
δ(|r| − b)

4πb2
e−ir·k

)N
=

=
1

(2π)3

∫
dkeik·R

(∫ π

0

dθ sin θ

∫ 2π

0

dφ

∫
drr2 δ(|r| − b)

4πb2
e−ir·k

)N
=

=
1

(2π)3

∫
dkeik·R

(∫ 1

−1

d cos θ
1

2
e−irk cos θ

)N
=

=
1

(2π)3

∫
dkeik·R

(
eikb − e−ikb

2kb

)N
=

1

(2π)3

∫
dkeik·R

(
sin kb

kb

)N
=

N�1&kb�1' 1

(2π)3

∫
dkeik·Re

−Nk2b2

6 =
1

(2π)3

∏
α=x,y,z

∫
dkαe

ikαRα−
Nk2αb

2

6 =

=
1

(2π)3

∏
α=x,y,z

∫
dkαe

− 1
2

(
− 3R2

α
Nb2
−2ikαRα+

Nk2αb
2

3

)
e−

3R2
α

2Nb2 =

=
1

(2π)3

∏
α=x,y,z

∫
dkαe

− 1
2

(
−i
√
3Rα√
Nb

+
√
Nkαb√

3

)2
e−

3R2
α

2Nb2 =
1

(2π)3

∏
α=x,y,z

∫
dkαe

− k
2
α
2
Nb2

3 e−
3R2
α

2Nb2 =

=

(
3

2πNb2

)3/2

e−
3(R2

x+R
2
y+R

2
z)

2Nb2 =

(
3

2πNb2

)3/2

e−
3R2

2Nb2

using sin x/x ' 1− x2/6 ' ex
2/6.

2.2 Gaussian Chain

In practice the Gaussian chain approximation is much more used also because physically
closer to the concept of Hamiltonian. For instance, for a chain whose bonds can be
described by a distribution

ψ(r) =

(
3

2πb2

)3/2

e−3r2/2b2 =

(
3

2πb2

)3/2

e−3(Ri+1−Ri)
2/2b2 (2.6)

one can think the bonds as springs of energy

H = kbT
3

2b2
(Ri+1 −Ri)

2 (2.7)

which at equilibrium are distributed as (2.6). One of the most important properties of a
Gaussian chain is that it is self=similar, meaning that any segment of a Gaussian chain
is Gaussian:

Φ(Rm −Rn, |m− n|) =

(
3

2π|m− n|b2

)3/2

e−3(Rm−Rn)2/2b2|m−n| (2.8)

which gives that the end-to-end distance of a Gaussian chain of |n−m| links is

〈(Rn −Rm)2〉 = |n−m|b2. (2.9)

Now, actually there is a better measure for a polymer, the radius of gyration, which is
basically the second moment of its mass distribution, the mean being the centre of mass
RG =

∑
nRn/N . The radius of gyration is defined as

R2
g =

1

N

∑
n

〈(Rn −Rg)
2〉 (2.10)
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another form of (2.10) can be found easily by noting:

R2
g =

1

N

〈∑
n

R2
n − 2

∑
n

RnRG + R2
G

〉
=

〈
1

N

∑
n

R2
n − 2

1

N2

∑
n

Rn ·
∑
m

Rm +
1

N3

∑
m

∑
i

Rm ·Ri

〉
=

=

〈
1

N

∑
n

R2
n − 2

1

N2

∑
n

Rn ·
∑
m

Rm +
1

N2

∑
m

R2
m +

1

N3

∑
m6=i

Rm ·Ri

〉
=

=

〈
1

N

∑
n

R2
n −

1

N2

∑
n

∑
m

Rn ·Rm

〉
=

1

2N2

∑
n,m

〈(Rn −Rm)2〉

By using this form for the gyration radius and eq.(2.9) it is easy to compute the radius
of gyration of a Gaussian linear chain:

R2
g =

1

2N2

N∑
n=1

N∑
m=1

〈(Rn −Rm)2〉 =
1

2N2

N∑
n=1

N∑
m=1

|n−m|b2 =

=
1

2N2

∫ N

0

∫ N

0

dndm|n−m|b2 =
1

N2

∫ N

0

∫ n

0

dndm(n−m)b2 =

=
1

N2

(∫ N

0

n2b2dn−
∫ N

0

n2

2
b2

)
=

b2

N2

(
N3

3
− N3

6

)
=
Nb2

6

2.3 Flexible Chains

2.3.1 Discrete Picture

In the case we are considering a semiflexible polymer with Kuhn length lK = Pb and
contour length Lc = Nb the formula for the radius of gyration becomes:

R2
g = 2lKLc

[
1

6
− lK

2Lc
+
l2K
L2
c

− l3K
L3
c

(
1− e−Lc/lk

)]
(2.11)

also called Benoit-Doty equation (I can’t find any derivation though). The other formula
often used and derived in Doi-Edwards, is the formula for a Kratky-Porod chain with
persistence length lp. In this case the bending penalty is function of the type: Eb =
cos θ|s−t|, where |s− t| is the contour distance of two segments which have are rotated by
an angle θ w.r.t. each other, i.e.

〈ri · rj〉 = b2〈cos θij〉 = b2

j−1∏
k=i

cos θk,k+1 = b2〈cos θ〉|i−j| (2.12)

In other words, any vector is rotate w.r.t. the previous by an amount cos θ, while the
product of a vector with itself is the length b2. Formally rn = cos θrn−1 and

〈rn · rm〉 = 〈rn−1 · rm〉 cos θ with 〈r2
n〉 = b2 (2.13)

As usual, the end to end distance is the sum of all the vectors r as:

〈R2
ee〉 = 〈

∑
i

ri ·
∑
j

rj〉 =
N∑

i,j=1

〈ri · rj〉
i→(i+j)/2=n

j→i−n=k
=

N∑
n=1

N−n∑
k=−n+1

〈rn · rn+k〉
(2.12)
=

'
N∑
n=1

∞∑
k=−∞

〈rn · rn+k〉 = N

(
〈r2
n〉+ 2

∞∑
k=1

b2 cos θk

)
= Nb2 1 + cos θ

1− cos θ
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Clearly here, one can call a new bead length b̄ to be the rescaled version of b depending
on the average value of cos θ (and not! θ which would give 〈cos θ〉 = 1). If this is zero,
than one retrieves the random flight model, instead if θ = 0 and 〈cos θ〉 = 1 one gets a
infinitely persistent walk!

2.3.2 Continuous Picture

The continuous version of the model described above is the Kratky-Porod model for worm
like chains. The bending potential one usually uses to model this is the following:

Ubend(ri, rj) =
εlp
σ

(
1 +

ri · rj
rij

)
(2.14)

where this is a function of the (complementary) angle between adjacent vectors, regulated
by a spring of stiffness proportional to the persistence length lp.

Another way of modelling this is the following; If we have a chain long L, and u(x) =
∂R/∂s(x) is the tangent along the contour at point x, one has a potential :

Ubend =
E

2

∫ L

0

ds

(
∂u

∂s

)2

(2.15)

thus the conformation distribution of a polymer with this feature is described by a Boltz-
mann distribution for this energy, which is:

Ψ[u] ∝ exp

(
−Ubend
kBT

)
= exp

[
− E

2kBT

∫ L

0

ds

(
∂u

∂s

)2
]

(2.16)

E/kBT has measure of length, begin the argument of the exponential adimensional and
the integral having dimensions of inverse length (curvature). This is why we an write E as
in the model above, i.e. lpε, visualising the stiffness of the spring as an energy ε typically
equal to kBT times lp.

Correlation 〈u(t) · u(0)〉

At this point one has to compute the correlation between tangent vectors! This is written
as:

〈u(t) · u(0)〉 =

∫
du

∫
du′u · u′G(u,u′; t)Ψeq(u

′) (2.17)

this equation simply says to compute the dot product between tangent vectors and give a
weight G(. . . ) to a particular product. This is the conditional probability that a polymer
takes direction u at time (or contour step) t, given that it start (at t = 0) in direction
u′. The last factor, Ψ is the equilibrium distribution of the vectors u′ and gives a weight
to the integral based on the particular starting direction (which actually is uniform in
this case, as there s no preferred starting direction). Now, the conditional probability is
nothing else than the Green function G(u,u′; t) that describes the rotational Brownian
motion with diffusion coefficient Dr, and that satisfies:

∂G(u,u′; t)

∂t
= DrR2G(u,u′; t) (2.18)

where R is the rotational operator, and it can be expressed as:

R = u× ∂

∂u
(2.19)
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or in index notation Rα = εαβγuβ∂γ, where ∂γ = ∂/∂uγ. Also notice that the rotational
operator is also used in Quantum mechanics and is Hermitian, i.e.

∫
dsR[AB] = 0 ↔

−
∫
ds[RA]B =

∫
dsA[RB]. OK.

Let’s go back to the computation of the correlation function. Let’s take its time
derivative:

∂〈u(t) · u(0)〉
∂t

=

∫
du

∫
du′u · u′ ∂

∂t
G(u,u′; t)Ψeq(u

′) =

= Dr

∫
du

∫
du′u · u′R2G(u,u′; t)Ψeq(u

′) =

= Dr

∫
du

∫
du′

[
R2u · u′

]
G(u,u′; t)Ψeq(u

′) (2.20)

at this point one uses this:

Rαuk = εαβγuβ∂γuk = εαβγuβδγk = εαβγuβ = −εαγβuβ = −εαβγuγ (2.21)

and by applying this twice:

R2
αuk = −εαβγRαuγ = −εαβγεαµνuµ∂νuγ = − (δβµδγν − δβνδγµ)uµδνγ = −3uβ+uβ = −2uβ

(2.22)
Perfect! And then by using this into eq. (2.20), one gets:

∂〈u(t) · u(0)〉
∂t

= −2Dr

∫
du

∫
du′u · u′G(u,u′; t)Ψeq(u

′) = −2Dr〈u(t) · u(0)〉 (2.23)

which simply gives:
〈u(t) · u(0)〉 = exp (−2Drt) (2.24)

being the rotational correlation time (or the rotational correlation length) equal to τr =
1/2Dr. Aslo it follows easily that the mean squared displacement is:

〈(u(t)− u(0))2〉 = 2〈u〉2 − 2〈u(t) · u(0)〉 = 2
(
1− e−2Drt

)
(2.25)

in the limit t� 1/2Dr than one can approximate this to the usual MSD:

〈(u(t)− u(0))2〉 = 4Drt. (2.26)

Very well now, let’s go back to the calculation of the end to end size for a flexible polymer.
This can be computed as (here I’m using the continuous version of r id est u):

R2
ee =

∫
dt

∫
ds〈u(t) · u(s)〉 =

∫ L

0

ds

∫ L

0

dte−2Dr|t−s| =

= 2

∫ L

0

dt

∫ t

0

dse−2Dr(t−s) =
1

Dr

∫ L

0

dte−2Drt
(
e2Drt − 1

)
=

=
L

Dr

− 1

2D2
r

(
1− e−2DrL

)
= 2lkL− 2l2k

(
1− e−L/lk

)
where lk = 1/2Dr is the Kuhn length and is twice the persistence length lp. i.e. . The
radius of gyration Rg is related to this as R2

g = R2
ee/12 and therefore one finally gets the

Kratky-Porod form of the radius of gyration:

R2
g =

lkL

6
− l2k

6

(
1− e−L/lk

)
(2.27)

where one gets the ideal random walk behaviour in the limit L � lk as R2
g ∼ lkL =

constNb2 (i.e. exp() ∼ 1), and in the other limit, L � lk one can expand the exp and
gets R2

g ∼ L2, i.e. a rod-like behaviour.
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2.4 Coil-to-Globule transition

TODO



Chapter 3

Excluded Volume Models

From Doi-Edwards: “In real polymers, the nature of the long range interaction is quite
complicated: the interaction will include steric effects, van der Waals attraction, and also
may involve other specific interactions mediated by solvent molecules. However, as far as
the property of large length scale is concerned, the detail of the interaction will not matter
because the excluded volume effect is controlled by the interaction between distant parts
of the chain.”

The exclude volume function is then some function of the distance r, v(r) which gives
a total steric energy

Uexcl =

∫
dn

∫
dmkBTv(Rn −Rm) ' 1

2
kBTv

∫
dn

∫
dmδ(Rn −Rm) (3.1)

where we approximated this un-known function with a delta function. We can go further,
and consider the concentration of segments at r,

c(r) =
∑
n

δ(r −Rn) =

∫ N

0

dnδ(r −Rn) (3.2)

and use this as repulsive term for the steric energy:

Uexcl =
1

2
kBTv

∫
dn

∫
dmδ(r −Rn)δ(r −Rm) =

1

2
kBTvc(r)2 (3.3)

This expression is the first virial term in the virial expansion which can, in principle,
contain any term in power of the concentration c. Clearly, the higher the power of c, the
smaller the term if c is small. Also, the concentration can be evaluated as the mass over
the d-dimensional volume occupied:

c =
N

Rd
g

= N1−3ν ,where ν is the entropic exponent. (3.4)

3.1 The entropic exponent ν

The original idea of Flory for calculating the size of a polymer is to consider the balance of
two effects: a repulsive excluded volume interaction which tends to swell the polymer, and
the elastic energy arising from the chain connectivity which tends to shrink the polymer.
This idea can be put into a particularly simple form of theory.

13
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First: Recall that for a Gaussian chain the free energy can be found as the logarithm
of its distribution. Hence the following is the free energy of a chain of N links with
end-to-end vector R:

A(R) = −kBT log Φ(R, N) =
3kBTR

2

2Nb2
(3.5)

This is forcing the chain to shrink due to its connectivity, if we were to try to pull such
polymer we would feel a restoring force, as an entropic spring with energy (3.5).

Second: We also need to take into account the excluded volume interactions; these
are described by an unknown exponent ν. Imagine to confine a gas in a volume |R|3 with
a concentration c = N/R3, the energy of the steric interaction would be

E =
1

2
vkBTc

2R3 ' kBTv
N2

R3
(3.6)

Because of these two effects, we get a corrected free energy

Aeff (R) ' kBT

(
3R2

2Nb2
+ v

N2

R3

)
(3.7)

from which we can obtain the most likely value of the size R by minimising this w.r.t R:

∂Aeff
∂R

' kBT

(
6R

2Nb2
− 3v

N2

R4

)
!

= 0 (3.8)

which gives:

R̄ =
(
vN3b2

)1/5 ∼ N3/5 as wanted/expected (3.9)

The Flory argument is actually wrong, and by luck mistakes cancel each others in this
case producing a result close to experiments. It is wrong because the corrected free energy
does not describe the free energy observed for polymers in solution in simulations. There
must be something else going on (find out).

3.1.1 Are Polymer Coils Impenetrable?

Here I will talk about a very important point, which I believe it is at the very heart of
my PhD. It all starts with Grosberg’s paper [4] and then very interestingly pointed out
more recently to compute the repulsion of knotted and circular polymer coils [5].

The question is: what is the energy penalty of two overlapping polymer coils? If this
is increasing with the length of the polymers then in the limit of large coils, this divereges
and coils are actually impenetrable. On the other hand, if this was a finite energy penalty
for any value of M it would not represent a major obstacle to coils interpenetration.

Let M be the length of the coils and a the size of a monomer. Then following older
works [?], the mean radius of gyration of the coil is R ∼ aN ν with ν = 0.588 in 3D.
The volume occupied is therefore V ∼ R3 ∼ a3M3ν . Let’s consider strongly overlap-
ping coils, i.e. two coils share exactly the same volume V . It is clear that the energy
penalty grows proportionally with the number of contacts between monomers. In partic-
ular, Fint ∼ kBTS, where S is the average number of contacts between polymers.

S can be estimated by the self-consistent mean field approximation where one visu-
alises a coil as a cloud of monomers distributed independently in a volume R3. In this
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case the number of contacts is equal to the product of the number of monomers of one
of the coils in the overlap region (∼ nV ) and of the contact probability for each of these
monomers (∼ na3), or Fint ∼ kBTnV na

3. The number of monomers in the overlapping
region nV is given by the self density: ρself = n = MR−3 = a−3M1−3ν . From which one
finds Fint ∼ kBTM

2−3ν . By plugging ν = 3/5 for linear SAWs one gets Fint ∼ kBTM
1/5

Equivalently one can
compute this as S =
ρ2selfR

3 ∼M2−3ν .
which diverges with the length of the coil. This means that in the limit of large coils,
they repel one another and tend to segregate.

The above calculation treats the coils and clouds of monomers whose interaction is
independent of the neighbours. In reality, monomers are placed along the coil in “sub-
clouds” and the interaction of these sub-clouds leads to an enhanced repulsion and a
decreases in the contact probability. This changes the picture dramatically.

The contact probability of two monomers of different chains is of the order (na3)1/(3ν−1) [1]
(instead of na3 of the self-consistent field approximation). Therefore by using this one
gets the estimate for the free energy:

Fint ∼ kBTnV (na3)1/(3ν−1) ∼ kBTM
(
M1−3ν

)1/(3ν−1) ∼ kBT (3.10)

which is independent of the coil length and means that interpenetrations only cost few
kBT s and are therefore abundant!!

Following Marenduzzo [5] (using Duplantier’s work [2]) one can find that two loops
which are brought in contact can be described by a free energy difference which is given
in terms of a change in one of the notes of a network of polymers. In fact two 2-legs
vertices become one 4-legged one as two loops touch one another. Following Duplantier,
this is captured by a new partition function Z ′ ' Sγ4−1 from Z ' S2γ2−2 the difference
in free energy is the log of their ratio:

∆F = −kBT
2γ2 − γ4 − 1

ν
log (x) (3.11)

where S = N ν is the Hausdorff space covered by the polymer, i.e. 1/ν = df is the
Hausdorff dimension and x = r/Nν is the ratio of distance of the two roots of the loops
over the size of the loops. I don’t really get

100% of this.

3.1.2 Real Mean Field

A real mean field argument should be formulated as follows: take the average concentra-
tion c(r) =

∫
dnδ(r − Rn), every segment would feel the same average potential c(r),

therefore we can describe the the statistical distribution as shifted by a virial term:

Ψ[{rn}] ∼ exp

{
− 3

2Nb2

∫
dn

(
dRn

dn

)2

− v

2

∫
drc(Rn)

}
(3.12)

and its Green function can then be computed as a solution of the Schroedinger-like equa-
tion [

∂

∂n
− b2

6

∂2

∂R2
+
v

2
c(R)

]
G(R, 0, N) = δ(R)δ(N) (3.13)

and with the Green function one can calculate self-consistently the concentration as

c(Rn) =
1

G(R, 0, N)

∫ N

0

G(R, r, N − n)G(r, 0, n) (3.14)
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which clearly is the integral over all the possible mid-points, of two paths covering the
polymer. The integral over this, normalised, will give the concentration of the polymer
segments in a volume.

3.2 Scaling Arguments for Predicting the Size

By only making some sound scaling arguments, one can get so much insight into the
physics of the system. For instance, we want to express the size of the polymer; We can do
that in many ways, Rg, Ree or other measures, but all of them must be related somehow.
Clearly, they have to be a function of the only length-scale of the system, b. Also, given
the Gaussian nature of the chain, we expect that by halving the number of links but
multiplying the monomer size by

√
2, nothing should change, as R =

√
Nb =

√
N/2
√

2b.
Therefore we expect:

R = F (N)b (3.15)

where F (N) is a dimensionless function of the number of monomers N . Now, we know
that this has to be invariant under re-scaling, i.e.

F (N/λ)
√
λb = R = F (N)b (3.16)

which is satisfied only when F (N) = number ×
√
N , and this is why any measure of the

size of the polymers is related to each other by only numerical factors. For the excluded
volume case, the transformation which leaves the system invariant is N → N/λ and
b→ bλν



Chapter 4

Hydrodynamics

We want to capture how to describe the motion of particles in a viscoelastic medium. At
first, one has to realise that the velocity field is caused by forces acting on the particles.
This is given by:

Vn = HnmFm (4.1)

where Hnm is the mobility tensor that describes the response of the medium to a force
Fm. In the dilute limit, it is clear that the response of a particle is only due to the force
applied on it, for this reason the mobility tensor is the more familiar

Hnm =
Iδmn
ζ

(4.2)

where ζ = 6πηr is the friction on a particle of radius r in a medium with viscosity η. On
the other hand, in general, the response of a particle to an external force is due to its
interaction with the environment. For instance, in the case of hydrodynamic interaction,
the motion of nearby particles create a flow which affects other particles. This is why
Hnm takes in general more complicated forms. Let’s see what are they.

4.1 Assumptions

First: Fluid is incompressible means that is divergence free in the velocity. There is no
sink or source of velocity, i.e.

∂vα
∂rα

= 0 (4.3)

Second: The particles are moving in a system with low Reynolds number, which means
that the inertia is negligible compared to the viscosity, i.e. Re = ρvL/η � 1. For this
reason one can write that the gradient of the stress on the system is equal to the external
force f applied:

∂σαβ
∂rβ

= −fα(r) (4.4)

4.2 The Equations

We first define the stress tensor as one diagonal part, and an off-diagonal part. The former
is related to pressure, the other to shear, i.e.

σαβ = η

(
∂vα
∂rβ

+
∂vβ
∂rα

)
+ Pδαβ (4.5)

17
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By using eq. (4.4) and eq. (4.3) one can write:

∂σαβ
∂rβ

= η

(
∂2vα
∂r2

β

+
∂

∂rα

∂vβ
∂rβ

)
+
∂P

∂rα

(4.3)
= η

∂2vα
∂r2

β

+
∂P

∂rα
= −fα (4.6)

This, and the incompressibility equation are called the Stokes approximation.

Now, let’s consider forces F applied on point-like particles at positions Rn. Such that

fα(r) =
∑
n

Fαδ(r −Rn) (4.7)

In this case eq. (4.6) becomes:

η
∂2vα
∂r2

β

+
∂P

∂rα
= −

∑
n

Fαδ(r −Rn) (4.8)

or in vectorial notation

η∇2v + ∇P = −
∑
n

F δ(r −Rn) (4.9)

Equations eq. (4.3) and eq. (4.9) are “easily” solved (see next section) and the result is
that the velocity field can be written as

v(r) =
∑
n

H(r −Rn) · Fn (4.10)

clearly, it has to be that the velocity field at r is the resultant of the forces applied to the
point particles mediate by the Oseen tensor:

H(r) =
1

8πηr

(
I +

rr

r2

)
(4.11)

where rr/r2 is a tensor, i.e. rαrβ divided by the squared length of r.

4.3 Calculation of the Oseen tensor

A la Doi and Edwards:
Let’s tart by Fourier transforming

F(fr) = fk =

∫
dk

(2π)d
fre

ik·r (4.12)

eqs. (4.3) and (4.9), this gives∫
dk

(2π)d
(
η∇2vr + ∇P

)
eik·r = −

∫
dk

(2π)d
fre

ik·r
∫

dk

(2π)d
∇vre

ik·r = 0

which leads to

− ηk2vk + ikPk = −fk k · vk = 0

Now, first of all obtain the expression for the pressure by using the incompressibility
condition on the Stokes equation:

k ·
(
−ηk2vk + ikPk = −fk

)
(4.13)
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which gives:

ik · kPk = −k · fk → Pk = −k · fk
ik2

(4.14)

Once one has this expression he can calculate back (now is better to use index nota-
tion):

− ηkγkγvk,α − kα
(
kβfk,β
kγkγ

)
= −fk,α (4.15)

which gives the Fourier transformed flow:

vk,α =
1

ηkγkγ

(
δαβ −

kαkβ
kγkγ

)
fβ (4.16)

which in vectorial notation:

vk =
1

ηk2

(
I − k ⊗ k

k2

)
fk (4.17)

Now we need to Fourier transform back to the real space. Reminding that the inverse
fourier transform of the product of Fourier transformed function is their convolution in
real space (i.e. F−1 [F(f)F(g)] = f ? g) one has

v(r) =

∫
dr′H(r − r′) · f(r′) (4.18)

where the tensor is the Oseen tensor

H(r) =

∫
dk

(2π)3

1

ηk2

(
I − k ⊗ k

k2

)
e−ik·r (4.19)

Now, the procedure to find this a la Doi and Edwards make use of the fact that the tensor
H(r) depends only on the vector r, therefore they infer that the functional form of the
tensor can be in general

Hαβ = Aδαβ +Br̂αr̂β (4.20)

Now by taking the trace Hαα and the product Hαβ r̂αr̂β one gets

Hαα = 3A+B

Hαβ r̂αr̂β = A+B

Fourier transformed these equations correspond to

3A+B = Tr

[∫
dk

(2π)3

1

ηk2

(
I − k ⊗ k

k2

)
e−ik·r

]
=

∫
dk

(2π)3

1

ηk2
(3− 1) e−ik·r

A+B =

∫
dk

(2π)3

1

ηk2

(
I − k ⊗ k

k2

)(
r ⊗ r

r2

)
e−ik·r =

∫
dk

(2π)3

1

ηk2

(
r2

r2
− (k · r)2

r2k2

)
e−ik·r

The former reduces to a standard complex integral, as the imaginary part of eix = sinx:

3A+B =
2

(2π)3

∫ 2π

0

dφ

∫ ∞
0

dkk2 1

ηk2

∫ 1

−1

d cos θe−ikr cos θ =
2

(2π)2

∫ ∞
0

dk
1

η

eikr − e−ikr

ikr
=

ξ=kr
=

4

(2π)2

∫ ∞
0

dξ

ηr

sin ξ

ξ
?
=

1

ηπ2r
=
[∫ ∞

0

dξ
eiξ

ξ

]
=

1

2ηπ2r
=
[∫ ∞
−∞

dξ
eiξ

ξ

]
=

=
1

2ηπ2r
=
[∫ −ε→0

−∞
dξ
eiξ

ξ
+

∫ ∞
ε→0

dξ
eiξ

ξ

]
=

∑
Res=0
=

1

2ηπ2r
=
[
−
∫
γε

dξ
eiξ

ξ
−
∫
γR

dξ
eiξ

ξ

]
eiξ

γR→0
=

1

2ηπ2r
=
[
−
∫
γε

dξ
eiξ

ξ

]
=

γεhalf clock-wise
=

1

2ηπ2r
=
[
πi lim

ε→0
eiε
]

=
π

2ηπ2r
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The latter is reduced to a similar form, via the following trick (again using t = cos θ = k̂ ·r̂
and ξ = |k||r|):

A+B =

∫
dk

(2π)3

1

ηk2

(
r2

r2
− (k · r)2

r2k2

)
e−ik·r =

1

η(2π)2r

∫ ∞
0

dξ

∫ 1

−1

dt
(
1− t2

)
e−iξt =

=
1

η(2π)2r

∫ ∞
0

dξ(1 +
∂2

∂ξ2
)

∫ 1

−1

dte−iξt
factor 1/2 wrt?

=
1

η2π2r

∫ ∞
0

dξ(1 +
∂2

∂ξ2
)
sin ξ

ξ

∂2↔
∫
dξ

=
π

4ηπ2r
+ 0

In light of these two equations one gets:

3A+B =
1

2ηπr

A+B =
1

4ηπr

which is satisfied only by

A = B =
1

8ηπr
(4.21)

and therefore the Oseen tensor is obtained:

Hαβ =
1

8ηπr

(
δαβ +

rαrβ
r2

)
(4.22)

which shows that while the diagonal part decreases as r−1, the off-diagonal interactions
go down as r−3.

4.4 Hydrodynamic Screening in Systems of Polymers

Doi and Edwards (page 180) say that at high concentrations the presence of polymers
affect the decay of the Oseen tensor, which is in free solution would be

H(r) ' 1

ηsr
(4.23)

gains a further decay due to the increased viscosity of the medium due to the presence
of polymers. When η � ηs appears a hydrodynamic screening for which at any distance
greater than ξH the polymers do not feel the velocity field induced at zero. This can
written in the Fourier space as:

H(k) ' I− k̂k̂
ηs(k2 + ξ−2

H )
(4.24)

which in real space reads:

H(r) ' e−r/ξH

ηsr
(4.25)

from which it is clear that exist a length ξH which kills the hydrodynamic interaction.
This length can be written as [3]

ξH =
2

πcb2
(4.26)

In our systems of melts where the segment density c ' 0.1σ−3, one gets that ξH ' 5σ
(σ = b) which is ten times shorter than our smallest system size. OK



Chapter 5

Brownian Motion

5.1 The Diffusion Eq.

Let’s start by considering a concentration c of solute in a solvent. Clearly, this solute
undergoes diffusion, and any unbalance in the distribution of concentration will create a
flux, in response to the concentration gradient, so to level out the disparity. The flux is:

j = −D∂c

∂x
(5.1)

where D describes the rapidity of the response, i.e. the diffusion coefficient; together with
the required continuity equation which states that any change in the concentration has
to caused by a source or a sink of flux:

∂c

∂t
= −∂j

∂x
(5.2)

one gets the famous diffusion equation:

∂c

∂t
= D

∂2c

∂x2
. (5.3)

5.1.1 Adding a Potential

In the case an external potential U(x) is applied to the system, a velocity will be produced,
in which the solute is moving in response to the force F = −dU/dx. The velocity v will
be proportional to the solute mobility µ = 1/ζ:

v = −1

ζ

dU

dx
(5.4)

This needs to be added to the flux equation, which will now read:

j = −D∂c

∂x
+ cv = −D∂c

∂x
− c

ζ

dU

dx
(5.5)

clearly, at equilibrium, the concentration is given by the Boltzmann distribution, inde-
pendently to what we see until now:

ceq(x) ∝ eU(x)/kBT (5.6)

and we expect the flux to be null in this case:

0
!

= j = −D∂ceq
∂x
−−ceq

ζ

dU

dx
(5.7)
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which is satisfied only if:

D =
kBT

ζ
(5.8)

which is the Einstein equation. This is a particular form of a more general law: the
fluctuation-dissipation theorem.

The Smoluchowski equation can then be found by re-utilising the continuity equation
onto this new flux and eq. (5.8):

− ∂j

∂x
=
∂c

∂t
= −D∂2c

∂x2
− ∂c

ζ∂x

dU

dx
= −1

ζ

∂

∂x

(
kBT

∂c

∂x
+ c

dU

dx

)
(5.9)

The same equation can be found in a more formal, and physically motivated way; let’s
consider the flux:

j(x) = −1

ζ
c
∂

∂x
(kBT log c(x) + U(x)) (5.10)

this is the flux produced by non-interaction particles, whose concentration c induces an
effective chemical potential U + kBT log c!!In particular, this is more correct that
before! In fact, what has to be constant at equilibrium is not the concentra-
tion, but the chemical potential!!! If we now define the flux velocity as vf = j/c
then the Smoluchowski equation can be derived by only the continuity equation where
the chemical potential U + kBT log c is considered, as:

∂c

∂t
= −∂(cvf )

∂x
. (5.11)

5.1.2 The Langevin Equation

In the case the diffusion coefficient does not depend on the position x, then the Sm. eq.
is equivalent to the Langevin eq.

ζ
∂x

∂t
=
dU

dx
+ f(t) (5.12)

where f(t) is a random force such that

〈f(t)〉 = 0 〈f(t1)f(t2)〉 = 2ζkBTδ(t1 − t2) (5.13)

Clearly eq. (5.12) can be easily integrated in the case U = 0 or a constant:

x(t) = x0 +
1

ζ

∫ t

0

dt′f(t′) (5.14)

being a superposition of uncorrelated stochastic noise over time t, the position x(t) needs
to obey the central limit theorem, and needs to be Gaussian. Hence the probability
distribution is:

Ψ(x, t) = (2πB)−1/2 exp
(x− A)2

2B
(5.15)

with
A = 〈x〉 B = 〈(x− 〈x〉)2〉 (5.16)

Clearly, the average 〈x〉 = x0 being

A = x0 + 〈
∫ t

0

dt′f(t′)〉 = x0 (5.17)
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and

B =
1

ζ2
〈
∫ t

0

dt′
∫ t

0

dt′′f(t′)f(t′′))〉 = 2
kBT

ζ

∫ t

0

∫ t

0

dt′dt′′δ(t′ − t′′) =
2kBT

ζ
t (5.18)

and by the Einstein realtion eq.(5.8):

B = 〈(x− 〈x〉)2〉 = 2Dt (5.19)

which generalises to 2dDt, where d is the number of dimensions.

5.2 Time Correlation and Response Functions

In this section we will see how to deal, in a general way, with correlation functions and
response functions. The Smoluch. eq. 5.9 can be written:

∂Ψ

∂t
=

1

ζ

∂

∂x

(
kBT

∂Ψ

∂x
+
∂U

∂x
Ψ

)
(5.20)

and in the multidimensional case, where the mobility is, in general, different along different
directions (see Oseen tensor and hydrodyn section), it can be written:

∂Ψ

∂t
=
∑
m,n

∂

∂xn
Lnm

(
kBT

∂Ψ

∂xm
+

∂U

∂xm
Ψ

)
(5.21)

and Ψ is the usual probability function at position x at time t. Very well. Now, in
general, the correlation of a quantity with itself is a decaying function of time which can
be defined as

CAA(t) = 〈A(t)A(0)〉 (5.22)

which starts at 〈A2(0)〉 at t = 0 and decays to 〈A〉2 at large t. Let’s see how to compute
these correlation functions. First, consider the conditional probability that a particle is
found at position x at time time t having started at x′ at time 0. This is given by the
Green’s function, G(x, x′; t) and has to satisfy the Smol. Eq.

∂Ψ

∂G
=
∑
m,n

∂

∂xn
Lnm

(
kBT

∂G

∂xm
+

∂U

∂xm
G

)
(5.23)

with B.C. G(x, x′ = 0) = δ(x − x′) therefore, one can in general weight the (cross)
correlation function of quantities A and B with the probability of having, first a particle
at x′ and then to have it at x at time t. This is clearly given by the expression:

〈A(t)B(0)〉 =

∫ ∫
dxdx′A(t)B(0)G(x, x′; t)Ψeq(x

′) (5.24)

very well. How do we now compute this? Actually, one uses a little trick. Consider its
time derivative:

∂

∂t
〈A(x)B(x′)〉 =

∫ ∫
dxdx′A(t)B(0)

∂

∂t
G(x, x′; t)Ψeq(x

′) = (5.25)

=

∫ ∫
dxdx′A(x)

∑
m,n

∂

∂xn
Lnm

(
kBT

∂G

∂xm
+

∂U

∂xm
G

)
B(x′)Ψeq(x

′)

(5.26)
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at t = 0, i.e. for small t’s, one can approximate the Green’s function G(x, x′; t) with its
value at t=0, i.e. δ(x− x′), this is handy! In fact,

∂

∂t
〈A(x)B(x′)〉

∣∣∣∣
t=0

=

∫
dxA(x)

∑
m,n

∂

∂xn
Lnm

(
kBT

∂(B(x)Ψeq(x))

∂xm
+

∂U

∂xm
B(x)Ψeq(x)

)
(5.27)

Now, consider two things : (i) Ψeq(x) = exp (−U(x)/kBT )/
∫
dx exp (−U(x)/kBT ) which

therefore leads to

B(x)
∂U

∂x
Ψeq = −kBTB(x)

∂Ψeq

∂x
(5.28)

and (ii)integration by parts....leading to:

∂

∂t
〈A(x)B(x′)〉

∣∣∣∣
t=0

= kBT

∫
dxA(x)

∑
m,n

∂

∂xn
Lnm

(
∂B(x)

∂xm
Ψeq(x) +

∂Ψeq(x)

∂xm
B(x)− ∂Ψeq(x)

∂xm
B(x)

)
(5.29)

simplifies to

∂

∂t
〈A(x)B(x′)〉

∣∣∣∣
t=0

= kBT

∫
dxA(x)

∑
m,n

∂

∂xn
Lnm

(
∂B(x)

∂xm
Ψeq(x)

)
(5.30)

and integrating again by parts (remember - sign)one finally gets:

∂

∂t
〈A(x)B(x′)〉

∣∣∣∣
t=0

= −kBT
∫
dx
∑
m,n

∂A(x)

∂xn
Lnm

(
∂B(x)

∂xm
Ψeq(x)

)
(5.31)

or in concise form:

∂

∂t
〈A(x)B(x′)〉

∣∣∣∣
t=0

= −kBT
∑
m,n

〈
∂A(x)

∂xn
Lnm

∂B(x)

∂xm

〉
Ψeq

(5.32)

which says that the initial slope of the decay of the correlation function of A and B
is given by the correlation of the product of the derivatives mediated by the mobility
matrix and averaged w.r.t. the equilibrium distribution. The initial decay rate defined as
Γ0 = − ∂〈A(x)B(x′)〉/∂t|t=0 /(〈AB〉−〈A〉〈B〉) is therefore given by eq. (5.32) opportunely
normalised.

5.2.1 The Fluctuation-Dissipation Theorem

Let’s say that I want to compute the response of an observable A as a function of time in
response to a small perturbation, which takes the form of a potential

U(x, t) = h(t)B(x). (5.33)

One can obtain the response by computing the expected value

〈A(t)〉h = 〈A〉0 +

∫ t

−∞
dt′µ(t− t′)h(t′) (5.34)

i.e. the deviation from the value at equilibrium 〈A〉0 is a linear functional of the applied
field and the response function µ(t). Now, it can be shown, (see below), that in the case
the perturbation is expressed as eq. (5.33), one can write:

µ(t) = −kBT
d

dt
CAB(t), (5.35)

and it is the general formulation of the fluctuation-dissipation eq. Now, let us prove this
equation!
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Proof:

Let’s consider a constant perturbation from −∞ to 0, at which time is turned off (step-
function). Clearly, the observable A changes, from the value 〈A〉h when the field was
on, to 〈A〉0 when the field is off. Now, this change is driven by the response function as
follows

〈A〉h = 〈A〉0 + α(t)h(t) (5.36)

where they are decoupled because of the form of the perturbation! and

α(t) =

∫ t

−∞
dt′µ(t− t′) =

∫ ∞
s

dsµ(s). (5.37)

Now, if the distribution function was known, the steady state of the observable A could
be computed as

〈A〉h =

∫
dxA(x)Ψ(x, t) (5.38)

but!! At t = 0 there is no field on end therefore the distribution at larger times t > 0 is
given by

Ψ(x, t) =

∫
dx′G(x, x′; t)Ψ(x, 0) (5.39)

where G(x, x′; t) is once again the probability of ending up at x at time t being at x′ at
time 0 and the distribution at time t = 0 is clearly

Ψ(x, 0) =
exp (−U(x)/kBT + h(0)B(x)/kBT )∫
dx exp (−U(x)/kBT + h(0)B(x)/kBT )

(5.40)

which for small h can be expanded:

Ψ(x, 0) =

exp (−U(x)/kBT )

[
1 +

h(0)B(x)

kBT

]
∫
dx exp (−U(x)/kBT + h(0)B(x))

(5.41)

at the denominator, one can write∫
dx exp (−U(x)/kBT − h(0)B(x)) =

∫
dx

[
1 +

h(0)B(x)

kBT

]
exp (−U(x)/kBT ) (5.42)

or simply ∫
dx exp (−U(x)/kBT )

[
1 +

h(0)〈B〉0
kBT

]
(5.43)

which in the expression for the distribution function becomes:

Ψ(x, 0) =

exp (−U(x)/kBT )

[
1 +

h(0)B(x)

kBT

]
∫
dx exp (−U(x)/kBT )

[
1 +

h(0)〈B〉0
kBT

] = Ψeq(x)

[
1 +

h(0)B(x)

kBT

] [
1− h(0)〈B〉0

kBT

]
=

' Ψeq(x)

[
1 + h(0)

B(x)− 〈B〉0
kBT

]
+O(h2)

Ok, now that we have an expression for the distribution at non-zero field Ψ(x, t) which
gives!

〈A(t)〉h =

∫
dxA(x)

∫
dx′G(x, x′; t)Ψeq(x

′)

[
1 + h(0)

B(x′)− 〈B〉0
kBT

]
(5.44)
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now it is easy to compute:

〈A(t)〉h =

∫
dxA(x)

∫
dx′G(x, x′; t)Ψeq(x

′) +

∫
dxA(x)

∫
dx′G(x, x′; t)Ψeq(x

′)h(0)
B(x′)− 〈B〉0

kBT
=

= 〈A〉0 + h(0)
〈A(t)B(0)〉 − 〈A〉0〈B〉0

kBT

by using the definitions of average and the property of equilibrium distribution Ψeq(x) =∫
dyG(x, y; t)Ψeq(y). Now it is clear that

α(t) =
1

h(t)
(〈A(t)〉h − 〈A〉0) =

〈A(t)B(0)〉 − 〈A〉0〈B〉0
kBT

=

∫ ∞
t

dt′µ(t′) (5.45)

and its time derivative:

µ(t) = − 1

kBT

d

dt
〈A(t)B(0)〉 = − 1

kBT

d

dt
CAB(t) (5.46)

�

The case in which A and B are the same quantity, is a special case. In this scenario,
let’s consider the case in which at time t = 0 a perturbation is turned on as a step function
so that:

〈A(t)〉h − 〈A〉0 = β(t)h (5.47)

where once again the growth is described by the function

β(t) =

∫ t

0

dsµ(s) (5.48)

now using what we discovered with eq. (5.46) one gets:

β(t) =

∫ t

0

dsµ(s) = − 1

kBT

∫ t

0

ds
d

ds
CAA(s) =

−CAA(t) + CAA(0)

kBT
(5.49)

and now (not clear) using 〈A(0)2〉 = 〈A(t)2〉

β(t) =
−2〈A(t)A(0)〉+ 〈A(0)2〉+ 〈A(t)2〉

2kBT
=
〈[A(t)− A(0)]2〉

2kBT
(5.50)

The Einstein relation is retrieved when A is position and the external field is a position
dependent potential expressing a constant force so that B is linear in x. In this case, the
field conjugate to B(x) = x is simply the force ∂U/∂x = h = const. Hence when the force
is turned on, the particle starts to move in the direction of the field with speed given by
v = h/ζ. Therefore

β(t) =

∫ t

0

dsµ(s)h =

∫ t

0

ds
h

ζ
=
t

ζ
(5.51)

since the mobility µ = 1/ζ = const. Therefore the FDT eq. becomes:

µ(t) =
1

ζ
= − 1

kBT

d

dt
Cxx(t) =

1

2kBT

d

dt
〈[x(t)− x(0)]2〉 =

1

kBT

dDt

dt
=

D

kBT
(5.52)

where we used the well-known fact: 〈[x(t)− x(0)]2〉 = 2Dt.

�
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5.3 Practical Example pg. 62: Harmonic Potential

5.3.1 Smol. Eq.

Let’s take an Harmonic potential centred in zero: U(x) =
k

2
x2. This has equilibrium

distribution:
Ψ(x)

dt
=

1

ζ

d

dx

(
kBT

dΨ(x)

dx
+
dU

dx
Ψ(x)

)
(5.53)

at equilibrium this gives:
1

Ψeq(x)

Ψeq(x)

dt
= − k

2kBT
x2 (5.54)

and therefore

Ψeq(x) = Ψ0 exp

[
− k

2kBT
x2

]
and

∫
Ψeq(x)dx = 1 (5.55)

therefore Ψ0 =

(
2πkBT

k

)−1/2

.

Ok, now we want to comoute the correlation function of the position, using the stan-
dard trick:

d

dt
〈x(t)x(0)〉 =

∫
dx

∫
dx′xx′

d

dt
G(x, x′; t)Ψeq(x

′) =

∫
dx

∫
dx′xx′

1

ζ

d

dx

(
kBT

dG

dx
+
dU

dx
G

)
Ψeq(x

′) =

by parts
=

∫
dx

∫
dx′

1

ζ

[
kBTG

d

dx

d(xx′)

dx
− kxd(xx′)

dx

]
Ψeq(x

′) =

= −k
ζ

∫
dx

∫
dx′xx′G(x, x′; t)Ψeq(x

′) = −k
ζ
〈x(t)x(0)〉 = −1

τ
〈x(t)x(0)〉

where τ is the decay time of the exponential function 〈x(t)x(0)〉. In fact:

〈x(t)x(0)〉 = 〈x(0)2〉e−t/τ (5.56)

where

〈x(0)2〉 =

∫ ∞
0

dxx2

(
2πkBT

k

)−1/2

e−kx
2/2kBT =

kBT

k
= σ2

is the second moment of the equilbirum distribution.

5.3.2 Langevin Eq.

The same picture can be described by the (overdamped) Langevin eq.

ζ
dx

dt
= −kx+ f(t) (5.57)

where the Harmonc potential is expressed as a constant force pointing toward x = 0. The
random force f(t) satisfies the usual constraints, where its mean 〈f〉 = 0 and variance
〈f(t)f(t′)〉 = 2ζkBTδ(t − t′). Let’s comoute the same correlation function, but first one
can express the posiiton x(t) =

∫ t
−∞ dt

′ exp (−(t− t′)/τ)f(t′)/ζ since the position x(t) will
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respond to the potential as a decay function, like there was no external radnom force, but
this has to be weighted by the effect of random collisions, therefore:

〈x(t)x(0)〉 =
1

ζ2

∫ t

−∞
dt1

∫ 0

−∞
dt2e

(t−t1−t2)/τ 〈f(t1)f(t2)〉 =

=
1

ζ2

∫ t

−∞
dt1

∫ 0

−∞
dt2e

(t−t1−t2)/τ2ζkBTδ(t1 − t2) =
2kBTτ

2ζ
e−t/τ

τ=ζ/k
=

kBT

k
e−t/τ

which agrees with the one comouted with the Smol. Eq..

5.3.3 Green’s Function

Now we want to compute the Green’s function for this system explicitly. Again, since the
result will be a linear combination of f(t), the distribution of x will be a Gaussian only
this time not centred in 〈f(t)〉 but it will have a shift induced by the harmonic potential.
Therefore:

G(x, x′; t) = (2πB)−1/2 e
−

(x− A)2

2B (5.58)

where
A(t) = 〈x(t)〉 and B(t) = 〈[x(t)− A(t)]2〉 (5.59)

To compute these quantities one should solve the Langevin equation under the condition
that at time t = 0 the position is the generci x0. So:

x(t) = x0e
−t/τ +

1

ζ

∫
dt′e−(t−t′)/τf(t′) (5.60)

and therefore

A = 〈x(t)〉 = x0e
−t/τ +

1

ζ

∫
dt′e−(t−t′)/τ 〈f(t′)〉 = x0e

−t/τ (5.61)

and

B = 〈[x(t)− A(t)]2〉 =
1

ζ2

∫
dt′
∫
dt′′e−[(t−t′)+(t−t′′)]/τ 〈f(t′)f(t′′)〉 =

=
2kBT

ζ

∫ t

0

dt′e−2(t−t′)/τ =
kBT

k

[
1− e−2t/τ

]
Therefore the Green’s function is given by:

G(x, x0; t) =

[
2πkBT

k

(
1− e−2t/τ

)]−1/2

exp

[
−k(x− x0 exp (−2t/τ))2

2kBT [1− exp (−2t/τ)]

]
(5.62)

One can consider the two limiting cases:

• t� τ : In this case the time is much smaller than the relaxation time τ = ζ/k, i.e.
either the fricition is very high or the spring k very small, in this case the distribution
will be a Gaussian centred in x0 and no force will be felt by the particle:

G(x, x0; t) =

[
2πkBT

ζ

]−1/2

exp

[
−ζ(x− x0)2

2kBT

]
(5.63)

which is the same as free diffusion.

• t � τ : In this case the exponentials have relaxed and therefore the only effect left
will be the one from the spring

G(x, x0; t) =

[
2πkBT

k

]−1/2

exp

[
− kx2

2kBT

]
(5.64)

This is the equilbrium ditribution for a particle in a potential well.
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Hermite Polynomials

A very interesting way of writing this result is via the Hermite polynomials. The Mehler’s
formula reads:

∞∑
p=1

Hp(ξ)Hp(η)

2pp!
sp = (1− s2) exp

[
ξ2 − (ξ − ηs)2

1− s2

]
(5.65)

where

Hp(ξ) = (−1)p exp ξ2 d
p

dξp
exp ξ2 (5.66)

and using this one can re-write eq. (5.62) in a eigen-values form:

G(x, x′; t) =
∞∑
p=0

exp (−λpt)ψp(x)ψp(x0)Ψeq(x) (5.67)

with λp = p/τ , ψp(x) = (2pp!)−1/2Hp(x/γ) and γ = (2kBT/k)1/2.
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Chapter 6

The Rouse Model

The Rouse model starts from the general description of a polymer made of beads of size
b connected via harmonic springs. The general Smol eq. is:

dΨ

dt
=
∑
nm

∂

∂Rn

Lnm

(
kBT

∂Ψ

∂Rm

+
∂U

∂Rn

Ψ

)
(6.1)

or, equivalently, the Langevin description:

dRn

dt
= −

∑
m

Lnm

(
dU

dRm

+ fm

)
+
kBT

2

∑
m

dLnm
dRm

(6.2)

where the last term is the equivalent of the derivative of the diffusion coefficient, or the
mobility (using Einstein relation).
In this model the hydrodynamic interactions are neglected and therefore we can take the
mobility tensor to be only a constant matrix of mobilities, rather than the Oseen tensor.

Lnm =
I

ζ
δnm (6.3)

This makes eq. (6.2) much easier, in fact:

ζ
dRn

dt
= − dU

dRn

+ fn (6.4)

By taking the potential describing the local interaction as:

U =
k

2

∞∑
n=1

(Rn −Rn−1)2 (6.5)

one gets (for the bulk):

ζ
dRn

dt
= −k (−Rn+1 + 2Rn −Rn−1) + fn (6.6)

This can be written in “continuous mode” by taking N →∞ as

ζ
dRn

dt
= k

d2Rn

dn2
+ fn (6.7)

where

〈fn(t)〉 = 0

〈fnα(t)fmβ(s)〉 = 2kBTζδnmδαβδ(t− s)

31
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For the two ends of the chain instead:

ζ
dR1

dt
= −k (−R2 + 2R1 −R0) + f1

ζ
dRN

dt
= −k (−RN+1 + 2RN −RN−1) + fN

and by setting R0 = R1 and RN+1 = RN one gets that the two ends need to satisfy:

dRn

dn

∣∣∣∣
n=1

= 0 =
dRn

dn

∣∣∣∣
n=N

. (6.8)

It is to be noted that eq. (6.7) is the easiest equation describing local interactions,
in fact one can start from somewhere else and end up with the same equation. Let’s
consider, for example, the most general Langevin eq. describing local interactions:

dRn

dt
=
∑
m

AnmRm + gn (6.9)

where Anm is a matrix of constants which weight the interaction between beads forming
the chain, which is a function only of their position. Because it is natural to describe the
interaction along the chain in terms of a fixed point (n) and the relative distance from it
(m) one can write:

dRn

dt
=
∑
m

An,n+mRn+m + gn (6.10)

Assuming that the interaction is slowly varying with the relative distance m one can
expand:∑
m

An,n+mRn+m ≡
∑
m

Am

(
Rn +m

dRn

dn
+
m2

2

d2Rn

dn2
+ . . .

)
= a0Rn+a1

dRn

dn
+a2

d2Rn

dn2
+. . .

(6.11)
Now, it is clear that a0 needs to be zero since the interaction is invariant for translations,
i.e. it cannot tell where it is along the chain, also the polymer cannot distinguish head-
to-tail and therefore also a1 needs to be zero. We are left only with

dRn

dt
= a2

d2Rn

dn2
+ gn (6.12)

which agrees with eq. (6.7).

Also, it is worth noting that for rings this is not completely true. In fact, there are
no ends!
In this case eq. (6.7) is valid for all the beads along the chain, not only in the bulk, and
in particular, for the two beads which are at the end of the indexing one gets:

ζ
dR1

dt
= −k (−R2 + 2R1 −RN) + f1

ζ
dRN

dt
= −k (−R1 + 2RN −RN−1) + fN

by setting R0 = RN and RN+1 = R1.
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6.1 Solving the Rouse Model with Modes

The best way to solve this model is by decomposing the eq. in modes, so that each mode
is independent. This is done by introducing normal coordinates, as one would do in the
case of a chain of oscillators.

6.1.1 Normal Coordinates

Let’s introduce the normal coordinates in which the modes of the polymer should be
non-interacting. We describe the modes as a linear super-position of the positions:

Xp =

∫ N

0

dnφnpRn (6.13)

in these coordinates we want the equation eq. (6.7) to become a standard Langevin-like
as the following:

ζp
dXp

dt
= −kpXp + fp (6.14)

in order to do so we first apply the latter equation to the normal coordinates eq. (6.13)
which give:

ζp
dXp

dt
=
ζp
ζ

∫ N

0

dnφnp

=dRn/dt eq. (6.7)(
k
d2Rn

dn2
+ fp

)
by parts

=
ζp
ζ

[(
kφnp

dRn

dn

∣∣∣∣N
0

− k
∫ N

0

dn
dφnp
dn

dRn

dn
+

∫ N

0

dnφnpfn

]
=

B.C.+parts
=

ζp
ζ

[
− kdφnp

dn
Rn

∣∣∣∣N
0

+ k

∫ N

0

dn
d2φnp
dn2

Rn +

∫ N

0

dnφnpfn

]
=

=

∫ N

0

dn(−kpφnpRn) + fp = −kpXp + fp

but the last line holds only if φnp satisfies:

ζp
ζ
k
d2φnp
dn2

= −kpφnp (6.15)

with Von Neumann boundary conditions, i.e. dφnp/dn|n=0,n=N = 0. Eq. (6.15) is the
standard eq. for oscillators, and its solution is a linear combination of harmonic functions:

φnp = A cos
(√

λn
)

+BA sin
(√

λn
)

(6.16)

by applying the two boundary conditions at n = 0 and n = N on its first derivative one
gets:

φnp = A cos
(pπn
N

)
(6.17)

and

kp =
kζp
ζ

(pπ
N

)2

(6.18)

with p = 0, 1, 2, . . . . Furthermore, the factor A should match the normalisation condition

at p = 0, i.e.
∫ N

0
dnA cos (pπn/N)|p=0 = AN

!
= 1 which gives A = 1/N .

Clearly the random force fp is a linear super-position of random forces fn weighted with
the functions φnp, i.e.

fp =
ζp
ζ

∫ N

0

dnφnpfn (6.19)
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which leads to

〈fp(t)〉 = 0

〈fpx(t)fpx(0)〉 = 2kBTζpδ(t)

so we can choose ζp in order to satisfy the fluctuation dissipation theorem. The left hand
side can be computed in terms of the old fn via the eigen-functions φnp

〈fpα(t)fqβ(0)〉 =
ζpζq
ζ2

∫
dn

∫
dmφnpφmq〈fnα(t)fmβ(0)〉 =

ζpζq
ζ2

2ζkBT

∫
dn

∫
dmφnpφmqδmnδαβδ(t) =

=
ζpζq
N2ζ2

2ζkBT

∫
dn

∫
dm cos (pπn/N) cos (qπm/N)δmnδαβδ(t) =

=
ζpζq
N2ζ2

2ζkBT

∫
dn cos (pπn/N) cos (qπn/N)δαβδ(t) =

=
ζpζq
N2ζ2

2ζkBT

∫
dn

1

2
(cos [(p+ q)πn/N ] + cos [(p− q)πn/N ]) δαβδ(t) =

=
ζ2
p

N2ζ2
2ζkBT

1+
maybe

(2) δp0
2

Nδpqδαβδ(t)

Now we are going to use this to solve eq. (6.7), as follows. We know that we need to
solve an equation as

ζ
dRn

dt
= k

d2Rn

dn2
+ fn (6.20)

but this has (in the r.h.s.) a dependence on the neighbouring beads. Using the normal
coordinates, one can reduce this equation to:

ζp
dXp

dt
= −kpXp + fp (6.21)

given that

Xp =

∫ N

0

dn
1

N
cos (pπn/N)Rn

kp =
ζp
ζ
k =

ζp
ζ

3kBT

b2

fp =

∫ N

0

dn
1

N
cos (pπn/N)fn

OK, now, first of all one want to compute the average of the p-mode, like:

〈Xpα(t)〉 =

∫ t

−∞
dt′e−(t−t′)/τ 〈fp(t′)〉

ζp
= 0 (6.22)

this can be seen in two ways. (1) Either you integrate the homogeneous eq. without f(t)
and use the result to integrate f(t). (2) Or, equivalently one can see this by using the
integrating factor exp (−(t− t′)/τ). For instance by taking the derivative w.r.t time in
both sides of eq. (6.22) one gets:

d

dt
Xpα(t) =

d

dt

∫ t

−∞
dt′e−(t−t′)/τ fp(t

′)

ζp
= − τ

ζp

∫ t

−∞
dt′e−(t−t′)/τ fp(t

′)

ζp
+

(
e−(t−t′)/τ fp(t

′)

ζp

∣∣∣∣
t′=t

= −kp
ζp
Xpα(t) +

fpα(t)

ζp
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exactly as the eq. (6.21). Ok, now let’s compute the correlation function between modes.
As already computed this gives:

〈Xpα(t)Xqβ(0)〉 =
1

ζ2
p

∫ t

−∞

∫ 0

−∞
dt1dt2 exp [−(t− t1 − t2)/τ ]〈fpα(t1)fqβ(t2)〉 =

2kBTζpτ

2ζ2
p

δpqδαβe
−t/τ =

τ=ζp/kp
=

kBT

kb
δpqδαβe

−t/τ for p > 0

and just to be clear,

τ = τp =
ζp
kb

kb=ζpp
2π2k/N2ζ
=

N2b2ζ

3π2kBT

1

p2
=
τ1

p2
(6.23)

But for p = 0 the equation for the mode X0 is rather different, as k0 = 0 one gets:

〈(X0α(t)−X0α(0))(X0β(t)−X0β(0))〉 =
1

ζ2
p

∫ t

0

dt1

∫ t

0

dt2〈f0α(t1)f0β(t2)〉 =

2kBTζpδαβ
ζ2
p

∫ t

0

dt1
p=0
=

2kBTδαβt

Nζ

So! For any mode which is not the zeroth mode, the correlation function decays as an
exponential, where the characteristic time decreases as p2. The zeroth mode actually
grows with t linearly! Let’s look at the inverse of the modes, these are:

Rn = X0 + 2
∞∑
p=1

cos
(pπn
N

)
Xp (6.24)

Therefore one can express, for instance, the centre of mass as the zeroth mode i.e.

Rcom = Xp=0 =
1

N

∫ N

0

dn cos (0πn/N)Rn

and its mean square displacement (or correlation between the difference in starting point):

〈(Rcom(t)−Rcom(0))2〉 = 〈(X0(t)−X0(0))2〉 =
∑

α=x,y,z

2kBTδααt

Nζ
=

6kBT

Nζ
t (6.25)

From which the diffusion coefficient of the centre of mass can be calculated via the Einstein
relation:

Dcom = lim
t→∞

〈(Rcom(t)−Rcom(0))2〉
6t

=
kBT

Nζ
(6.26)

This is the main result of the Rouse model. And it works in regimes in which hydrody-
namics is not too important. For instance when the fluid is very viscous, or there is no
fluid, like in the melt..in this case short enough chains do not reptate but follow the Rouse
model (picked up later in this notes). The other modes can be interpreted, for instance,
as the distance between points along the chain. The end-to-end vector:

P (t) = RN −R0 (6.27)

can be interpreted as the difference:

P (t) = X0(t) + 2
∞∑
p=1

cos

(
pπN

N

)
RN(t)−Xp(t)− 2

∞∑
p=1

cos

(
pπ0

N

)
Xp(t) = 2

∞∑
p=1

(cos (pπ)− 1)Xp =

= −4
∑
p:odd

Xp
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and its correlation function:

〈P (t)·P (0)〉 = 16
∑
p:odd

〈Xp(t)·Xp(0)〉 p>0
=

∑
p=1,3,5,...

16
3kBTζ

kp
e−t/τp = N2b2

∑
p=1,3,5,...

8

p2π2
e−tp

2/τ1

(6.28)
In general Xp represents the local motion of a segment that contains N/p
monomers and corresponds to the motion with the length-scale of the order
of (N/p)1/2b. Since N/p is the number of segments of size b and the size of that
coiled segment is the number of segments to the 1/2 = entropic exponent for
a phantom chain. Finally, the longest relaxation time is given by the relaxation time
of the first moment, i.e. τ1

τr =
N2b2ζ

3π2kBT
and Dcom =

kBT

Nζ
(6.29)



Chapter 7

Reptation

7.1 The Tube Model

The rigorous account for topological interactions is extremely difficult and it has been
shown that an entangled state can be described by an effective “tube model”, where a
single chain is surrounded by other polymers.

The tube models describes the motion of a probe chain in a midst of other chains,
but it can’t take into account the collective motion of chains. This is the main reason for
which it fails to describe a system of rings.

Let’s say that there is a chain in a network of fixed obstacles such that its primitive
contour length is

L =
Nb2

a
(7.1)

which means that L times the number of entanglement lengths a equals the length of the
Rouse chain Nb2. Consider the end-to-end vector P (t) = R(L, t)−R(0, t). Its correlation
function 〈P (t)P (0)〉 gives the quantity of length that is still inside the same tube after
time t. This can be expressed as a〈σ(t)〉 where σ(t) is the number of entanglement lengths
still in the tube. Define a function ψ(s, t) which gives the probability that segment s is
still in the tube at time t, then clearly

σ(t) =

∫ L

0

dsψ(s, t) (7.2)

Now, define a more complicated probability. Which is the probability that a chain moves
a length ζ without hitting s with neither ends and time t: Ψ(ζ, t; s). This quantity
undergoes 1D diffusion along the polymer contour:

∂Ψ(ζ, t; s)

∂t
= Dc

∂2Ψ(ζ, t; s)

∂ζ2
(7.3)

This equation is actually fairly similar to the Rouse equation. The boundary conditions
are somewhat different. Here, in fact,

Ψ(ζ, 0; s) = δ(ζ) (7.4)

which means that at time zero the chain has not moved yet and that the boundary
conditions are: This expression

could be identical
for a branch of
branched polymer,
with the caveat that
only one end can
move and vanishes
when hits the other
end. Plus, add some
delay for threadings.

Ψ(ζ, t; s) = 0 if ζ = s or ζ = s− L (7.5)

which means that the function vanishes if one of the two ends hits the segment s.
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The solution can be found in a similar way we found the solution for the Rouse chain
(see Section on Rouse) and gives

Ψ(ζ, t; s) =
∞∑
p=1

2

L
sin
(pπs
L

)
sin

(
pπ(s− L)

L

)
e−p

2t/τd (7.6)

where τd = L2/Dcπ
2. After this, the function ψ(s, t) is easily found as

ψ(s, t) =

∫ s

s−L
dζΨ(ζ, t; s) =

∑
p:odd

4

pπ
sin
(pπs
L

)
e−p

2t/τd (7.7)

and finally

〈P (t)P (0)〉 = Laψ(t) = La
1

L

∫ L

0

dsψ(s, t) =
∑
p:odd

8

p2π
e−p

2t/τd (7.8)

which is exactly the same as for the Rouse chain, a part from the characteristic time

τd =
1

π2

ξM3b4

kBTa2
while τR =

M2b2ξ

kBT3π2
. (7.9)



Chapter 8

Brownian Ratchet

One concept that might be interesting to keep in mind is that of “Brownian Ratchet”.
This had been advanced in the ’90s to explain how cells move on a substrate (Peskin
Odell Oster Biophys J. 1993). The network of actin tubules polymerise along the “+”
end, therefore creating a flux of material in one direction. If one imagines a fluctuating
membrane which is diffusing in front of a single microtubule then the competition between
polymerisation timescale and diffusion timescale might be able to “rectify” the motion of
the membrane and create directed motion.

The basic model is that of a fibre which is growing and in front of it there is a diffusing
flat membrane. The fibre grows by adding monomers of size δ at rate kon and removed
with rate koff . The diffusion is regulated by D and there might be a force f applied onto
the membrane from the “outside”.

The max speed of the ratchet is achieved when one monomer is added every time the
membrane diffuses a space large enough that a new monomer can be inserted. This means
tδ = δ2/2D. The speed is therefore videal = δ/tδ = 2D/δ.

In the “real” case one can describe the situation in a more general terms. One in
general has a distance x of the tip of the fibre from the surface of the membrane. The
probability of being at distance x at time t can be written as a diffusion-advection equation

∂p(x, t)

∂t
= D

∂2p

∂x2
+
f

γ

∂p

∂x
+

+ kon [p(x+ δ, t)− p(x, t)Θ(x− δ)] +

− koff [p(x− δ, t)Θ(x)− p(x, t)] (8.1)

The last two term can be understood as a sort of Master equation-like terms that balance
the mass lost and gained at a given timestep. The heaviside functions act to make sure
that the move can be done (i.e. the membrane is or was, far enough to allow the move).

In this more complicated case one can then argue that the speed is given by

vratchet = δkonp(gap ≥ δ)− koffδ =

= δkon

∫∞
δ
pss(x)∫∞

0
pss(x)

− koffδ (8.2)

this is because each time the gap is greater than δ I can put a monomer. And this happen
at rate kon. The speed being ∼ δkon − δkoff . The steady state probability pss(x) has
therefore to be computed.

The important dimensionless parameters are konδ
2/D and koffδ

2/D. These reflect
how many monomers are added or lost during one diffusion time ∼ δ2/D. Now assuming
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konδ
2/D � 1 one can write the steady state solution as

0 = D
∂2pss
∂x2

+
Df

kBT

∂pss
∂x

=

=
d

dx

[
D
dpss
dx

+
Dfpss
kBT

]
=
dJ

dx
(8.3)

with J being a “current”. To satisfy this equation the current needs to be constant, and
using the no-flux boundary condition (at the membrane there is no escape of probability)
one can therefore set J = 0. The equation thus reduces to

J = 0 =
dpss
dx

+
fpss
kBT

(8.4)

which simply gives p ∝ e−fx/kBT . Plugging this solution back to the equation for the
velocity one obtains:

vratchet = δkon

∫∞
δ
e−fx/kBTdx∫∞

0
e−fx/kBT dx

− koffδ =

= δ
[
kone

−fδ/kBT − koff
]

(8.5)

Plugging in some realistic numbers (for instance kon ' 100s−1 � koff ' s−1) one gets
(for f = 0) vratchet ' konδ ' 300nms−1 not too far from the real case which is of or-
der 100 − 200nms−1. From the same equation one can find the stalling force f so that
vratchet = 0.easy exercise to do

8.1 Multiple Diffusing Cohesins on Chromatin

In this case one considers the density of cohesins ρ. On equation that one can write for
uniform binding of cohesins reads:

dρ

dt
= kon

Noff

L
− koffρ+D

d2ρ

dx2
(8.6)

where Noff is the number of off cohesins that can rebind at any time and L the system
size. Steady state is

ρss =
kon
koff

Noff

L
=

Nkon
kon + koff

1

L
(8.7)

since Noff = Nkoff/(kon + koff ) and N being the total number of cohesins. In this case
the density is of course constant everywhere.

Another equation that one can write is one in which the cohesins always rebind in the
same site (loading side). In this case the equation is

dρ

dt
= konNoffδ(x)− koffρ+D

d2ρ

dx2
(8.8)

and in this case the steady state

ρss(x) = Ae−
√
koff
D
|x| (8.9)

This behaviour can be understood as a steady state difference of density of cohesins, i.e.
a difference of pressure as pV = nRT or p = RTρ.
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To measure the force on any one cohesin induced by this pressure difference one can
use the overdamped form f = γdl/dt where l is the distance along the fibre, i.e. the 1D
position, and dl/dt being the speed due to the force. Since the force can also be computed
as dp/dxσ = AkBTσe

−αx(−α) (with α =
√
koff/D) one can finally relate the distance

travelled l with the pressure p and compute what is the speed of any cohesin at a given
l. The result is something along the line: to check

γ
dl

dt
= konσNoffe

−αl/2γ (8.10)

and finally the prediction of loop length l

l

2
=

2

α
log
[
1 +

α

2
Noffkonσt

]
. (8.11)
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